

Pergamon

0040-4039(94)01508-2

Synthesis of the First [1,3] Benzoxazino[3,2-b][1,2] benzoxazine and its Tandem Retro-Diels-Alder - Diels-Alder Rearrangement to a Novel $[1,3]$ Benzoxazino $[2,3-b]$ $[1,3]$ benzoxazine.

Zeev Goldschmidt,* Shlomo Levinger and Hugo E. Gottlieb

Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel

Abstract: Thermolysis of 3-methyl-4H-1,2-benzoxazine gave the tetracyclic 12a-methyl-7H,12aH,13H-[1,3]benzoxazino[3,2-b][1,2]benzoxazine, which further rearranged to the isomeric 5a-methyl-5aH,11H,13H-[1,3]benzoxazino[2,3-b][1,3]benzoxazine. Thermolysis of the benzoxazinobenzoxazines gave 2-methyl-4H-1,3-benzoxazine, and o-quinone methide which was trapped by ethyl vinyl ether to give 2-ethoxy-dihydrobenzopyran.

Hetero cycloaddition reactions have recently become a powerful tool in the stereoselective synthesis of complex heterocyclic systems.¹ Here we wish to report a simple approach to two novel derivatives of bezoxazinobenzoxazines, 1 and 2, by a sequence of tandem² retro-Diels-Alder-Diels-Alder (RDA-DA) reactions. Of the three possible isomers of the nitrogen-bridged linear benzoxazinobenzoxazines 1-3, only a single analogue, imide 4,3 and the thio-analogue benzothiazinobenzothazine 5,4 have been reported before.

Shudo and co-workers⁵ have recently shown that the mild thermolysis (< 90 °C) of 1,2-benzoxazines 6 in the presence of electron rich olefins gave chromans 8, in a tandem RDA-DA reaction, via the highly reactive o-quinone methide intermediates 7. We have found that thermolysis of $6 (R = CH₃)$ in refluxing chloroform, in the absence of an external olefin source, leads smoothly to the novel tetracyclic 12a-methyl-7H,12aH,13H-[1,3]benzoxazino[3,2-b][1,2]benzoxazine 9.6 None of the dimeric nor trimeric derivatives of o -quinone methide which are obtained in the usual pyrolytic methods7 were detected.

Benzoxazinobenzoxazine 9 was readily identified by its ¹H NMR (CDCl₃, 300 MHz) spectrum which exhibits two nonequivalent AB systems for the methylene groups of the 1,2- (δ 3.14 and 3.22, Jg _{em}=17 Hz) and 1,3-oxazine (δ 4.44 and 4.57, Jgem=18 Hz) rings. Although 9 could readily be isolated as a crystalline compound,8 it was quite labile under the reaction **conditions, undergoing** fbrther thermal rearrangement to the novel isomeric Sa-methyl-5aH, 11H, 13H-[1,3]benzoxazino[2,3-b][1,3]benzoxazine 10.6.8 Here, the two equivalent methylene groups appear in **the** lH NMR **spectrum as a single AB system (6** 3.88 and 4.19, Jgem=15.8 Hz). The structure of 10 was further confirmed by its independent synthesis from bis(2hydroxybenzyl)-amine 119 and trimethyl orthoacetate.10

Notably, the ¹H and ¹³C NMR spectra of 10 show variable temperature dependence indicating conformational dynamics about the central C-N ring fusion. At the limiting low temperature ^IH NMR spectrum $(-114 \, \text{°C}, \text{CD}_2\text{Cl}_2)$ the methylene AB quartet is resolved into four equally populated resonances arranged in **two AB** quartets, whereas the angular methyl signal (6 1.84) remains invariant. Similarly, the methylene signal (δ 48.88) in the ¹³C(¹H) NMR spectrum splits at low temperature (-59 ^oC) into two equally populated signals while the methyl signal (δ 23.57) remains unchanged. This behavior is consistent with ring inversion of the two

1,3-benzoxazino wings of the cis-fused 10. The energy barrier to ring inversion, $\Delta G^{\#} = 8.7$ kcal/mol, is significantly lower than that observed for *cis*-decalin $(\Delta G^{\#} = 12.8 \text{ kcal/mol})$.¹¹⁻¹³

Formation of the nonsymmetrical benzoxazinobenzoxazine 9 and its subsequent rearrangement **to the** symmetricaf benzoxazinobenzoxazine **10** is best rationalized as **a** "domino cascade" of tandem RDA-DA transformations. Thus, the initial RDA generation of o-quinone methide 7 from 1,2-benzoxazine 6 in the absence of added olefin is rapidly followed by a *regiospecific* DA cycloaddition of 7 and another molecule of 6, to form adduct 9 exclusively. The reaction followed first order kinetics with a free energy of activation $\Delta G^{\#}$ = 25.2 kcal/mol (at 58 0C).¹²

The second RDA-DA reaction pair leading to the Diels-Alder regiomer 10 involves regeneration of 7 and 2-methyl-4H-1,3-benzoxazine 12^{14} by RDA cleavage of the 1,2-benzoxazine wing of 9, followed by a regiospecific inverse DA recombination. This rearrangement pathway could be verified by running the reaction in the presence of an excess of ethyl vinyl ether, which traps 7 in situ, to give the DA adduct 2-ethoxydihydrobenzopyran 1315 and the thermally stable benzoxazine 12. The rearrangement rate is ca. one order of magnitude slower than the decomposition rate of 6 to 9, yielding a higher reaction barrier, $\Delta G^{\#} = 26.2$ kcal/mol (at 58 $^{\circ}$ C).¹²

Furthermore, benzoxazinobenzoxazine 10, like its counterpart 9, is capable of undergoing the RDA reaction regenerating once again 7 and 12, yet this time by cleavage of the more stable 1,3-benzoxazine ring. This was again demonstrated by conducting the thermolysis in benzene with an excess of ethyl vinyl ether (100 OC, 4 days, sealed tube, 65% yield) to yield as above a 1: 1 mixture of **12** and 13, thus completing a third RDA-DA sequence. The barrier for cleavage of the 1,3-benzoxazine ring of 10, $\Delta G^{\#} = 31.2$ kcal/mol (at 108) ⁰C), is considerably higher than that observed for 1,2-benzoxazines 6 and 9 (vide supra).¹²

In conclusion, we have demonstrated the power of sequential tandem RDA-DA reactions **in** the synthesis and interconversion of novel benzoxazinobenzoxazines, and have discovered *inter alia*, two mild o-quinone methide generators, and a convenient approach to the rare $4H-1,3$ -benzoxazine system. We are presently extending this strategy to synthesis and exploration of related novel heterocycles.

Acknowledgements: We thank Sima Alfi for technical assistance, and the Bar-Ilan University **Committee for** the Advancement of Science (Grant 2266) for financial support of this work.

References and Notes

1. (a) Boger, D.L.; Weinreb, S.N. Hetero Diels-Alder Methodology in Organic Synthesis; Academic Press, Inc: **New-York, 1987.**

(b) Padwa, A. *I, 3-Dipolar Cycloaddition Chemistry; Wiley: New-York, 1984.*

- 2, Ho, T.L. Tandem Organic Reactions; John Wiley & Sons, Inc.: New-York, 1992.
- **3.** Abdelrazek, F.M.; Kandeel, Z.E.; Hilmy, K.M.H.; Elnagdi, M.H. Chem. Ind. (London) 1983, 439-440.
- **4. Meier, H;** Klaus, S; Mengel, R; Niedermann **H.-P. 3,** *Heterocyclk C&em.* **1991, 28, 843-848.**
- **5.** Yato, M.; Ohwada, T.; Shudo, K. *J. Am. Chem. Soc.* 1990, 112, 5341-5342.
- **6. All new** compounds were characterized by their NMP and MS spectra and gave satisfactary elemental analyses.
- **7.** (a) Desimoni, G; Tacconi, G. Chem. Rev. 1975, 75 651-692. (b) K&t*, A-R.; Zhang, 2.; Lan, X.; Lang, H. J; Org. Chem. **1994,59 1900-1903,** and references cited therein.
- **8. Typical procedure:** A solution of 6 ($R = Me$) (220 mg, 1.5 mmol) in dry CHCl₃ (10 ml) was refluxed for 2 h. The solvent was removed, and the residue chromatographed on silica (hexane- $CH₂Cl₂$) to give 9 (130 mg, 69% yield, from hexane), **m.p. 116-l** 17 OC. When reflux is continued for additional 15 h and the reaction mixture worked up as above, 10 was isolated in 60% yield, m-p. **97-98 OG.**

9: ¹H NMR (CDCl₃, 300 MHz, TMS) δ 1.59 (3H_{Me}), 3.14, 3.22 (2H₁₃, $J_{13,13'}$ = 17 Hz), 4.44, 4.57 $(2H_7, J_{7,T} = 18 \text{ Hz})$, 6.7-7.4 (8H, aromatic); ¹³C NMR (CDCl₃, 300 MHz, TMS) δ 23.48 (C_{Me}), 37.48 (C_{13}) , 49.86 (C_{7}) , 86.68 (C_{12a}) , 114.35, 117.18, 117.31, 118.19, 121.02, 121.49, 126.84(x2), 128.10, 128.73, 151.62, 154.68 (12C, aromatic). *'*

10; ¹H NMR (CDCl₃, 300 MHz, TMS) δ 1.84 (3H_{Me}), 3.88, 4.19 (4H, J = 15.8 Hz), 6.7-7.4 (8H, aromatic); ¹³C NMR (CDCl₃, 300 MHz, TMS) δ 23.57 (C_{Me}), 48.88 (C₁₁, C₁₃), 106.29 (C_{5a}), 116.73, **118.18, 121.46, 126.77, 128.19, 150.61 (12C,** aromatic),

- **9.** Duff, J.C; Furness, V.I. J. Chem. Soc. 1951 1512-1515.
- **10.** Typical **procedure:** A mixture of 11 (100 mg, 0.44 mmol), trimethyl orthoacetate (2 ml) and p-TsOH (5 **mg) was** refluxed until alE the aminediol dissolved. Excess otthoacetate was evaporated and the residue crystallized from $CH₂Cl₂$ -hexane to give 10.⁸
- **11.** Jensen, F.R.; Beck, B.H. *Tetrahedron Lett.* 1966, 4523-4526.
- **12** The fill analysis will be published elsewhere.
- **13.** This part of the work was performed in collaboration with Naomi Lavochnik.
- 14. **(a) Gabriel, S**; *Liebigs Ann. Chem.* 1915, 409, 305-327 fb) **12:** 1H NMR **(CDC13, 300 MHz, TMS) 6 2.08 (3H, s), 4.53 (2H, s), 6.8-7.2 (4H, m).**
- **15, Descotes, G; Martin, J.-C.; Mathicolonis, N. BY&. SW.** *Chn. Fr.* **1972,** 1077-1084.

(Received in UK 11 July **1994,** *revised 1 Augrrrt 1994; accepted* **4** *Augurt* **1994)**