

Pergamon

0040-4039(94)01508-2

Synthesis of the First [1,3]Benzoxazino[3,2-b][1,2]benzoxazine and its Tandem Retro-Diels-Alder - Diels-Alder Rearrangement to a Novel [1,3]Benzoxazino[2,3-b][1,3]benzoxazine.

Zeev Goldschmidt,* Shlomo Levinger and Hugo E. Gottlieb

Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel

Abstract: Thermolysis of 3-methyl-4H-1,2-benzoxazine gave the tetracyclic 12a-methyl-7H,12aH,13H-[1,3]benzoxazino[3,2-b][1,2]benzoxazine, which further rearranged to the isomeric 5a-methyl-5aH,11H,13H-[1,3]benzoxazino[2,3-b][1,3]benzoxazine. Thermolysis of the benzoxazinobenzoxazines gave 2-methyl-4H-1,3-benzoxazine, and *o*-quinone methide which was trapped by ethyl vinyl ether to give 2-ethoxy-dihydrobenzopyran.

Hetero cycloaddition reactions have recently become a powerful tool in the stereoselective synthesis of complex heterocyclic systems.¹ Here we wish to report a simple approach to two novel derivatives of bezoxazinobenzoxazines, 1 and 2, by a sequence of tandem² retro-Diels-Alder-Diels-Alder (RDA-DA) reactions. Of the three possible isomers of the nitrogen-bridged linear benzoxazinobenzoxazines 1-3, only a single analogue, imide 4,³ and the thio-analogue benzothiazinobenzothazine 5,⁴ have been reported before.

Shudo and co-workers⁵ have recently shown that the mild thermolysis (< 90 0 C) of 1,2-benzoxazines 6 in the presence of electron rich olefins gave chromans 8, in a tandem RDA-DA reaction, via the highly reactive o-quinone methide intermediates 7. We have found that thermolysis of 6 (R = CH₃) in refluxing chloroform, *in* the absence of an external olefin source, leads smoothly to the novel tetracyclic 12a-methyl-7H, 12aH, 13H-[1,3]benzoxazino[3,2-b][1,2]benzoxazine 9.6 None of the dimeric nor trimeric derivatives of o-quinone methide which are obtained in the usual pyrolytic methods⁷ were detected.

Benzoxazinobenzoxazine 9 was readily identified by its ¹H NMR (CDCl₃, 300 MHz) spectrum which exhibits two nonequivalent AB systems for the methylene groups of the 1,2- (δ 3.14 and 3.22, Jgem=17 Hz) and 1,3-oxazine (δ 4.44 and 4.57, Jgem=18 Hz) rings. Although 9 could readily be isolated as a crystalline compound,⁸ it was quite labile under the reaction conditions, undergoing further thermal rearrangement to the novel isomeric 5a-methyl-5aH,11H,13H-[1,3]benzoxazino[2,3-b][1,3]benzoxazine 10.6.8 Here, the two equivalent methylene groups appear in the ¹H NMR spectrum as a single AB system (δ 3.88 and 4.19, Jgem=15.8 Hz). The structure of 10 was further confirmed by its independent synthesis from bis(2hydroxybenzyl)-amine 11⁹ and trimethyl orthoacetate.¹⁰

Notably, the ¹H and ¹³C NMR spectra of 10 show variable temperature dependence indicating conformational dynamics about the central C-N ring fusion. At the limiting low temperature ¹H NMR spectrum (-114 ⁰C, CD₂Cl₂) the methylene AB quartet is resolved into four equally populated resonances arranged in two AB quartets, whereas the angular methyl signal (δ 1.84) remains invariant. Similarly, the methylene signal (δ 48.88) in the ¹³C{¹H} NMR spectrum splits at low temperature (-59 ⁰C) into two equally populated signals while the methyl signal (δ 23.57) remains unchanged. This behavior is consistent with ring inversion of the two

1,3-benzoxazino wings of the *cis*-fused 10. The energy barrier to ring inversion, $\Delta G^{\#} = 8.7$ kcal/mol, is significantly lower than that observed for *cis*-decalin ($\Delta G^{\#} = 12.8$ kcal/mol).¹¹⁻¹³

Formation of the nonsymmetrical benzoxazinobenzoxazine 9 and its subsequent rearrangement to the symmetrical benzoxazinobenzoxazine 10 is best rationalized as a "domino cascade" of tandem RDA-DA transformations. Thus, the initial RDA generation of *o*-quinone methide 7 from 1,2-benzoxazine 6 in the absence of added olefin is rapidly followed by a *regiospecific* DA cycloaddition of 7 and another molecule of 6, to form adduct 9 exclusively. The reaction followed first order kinetics with a free energy of activation $\Delta G^{\#} = 25.2 \text{ kcal/mol}$ (at 58 °C).¹²

The second RDA-DA reaction pair leading to the Diels-Alder regiomer 10 involves regeneration of 7 and 2-methyl-4H-1,3-benzoxazine 12^{14} by RDA cleavage of the 1,2-benzoxazine wing of 9, followed by a regiospecific inverse DA recombination. This rearrangement pathway could be verified by running the reaction in the presence of an excess of ethyl vinyl ether, which traps 7 *in situ*, to give the DA adduct 2-ethoxy-dihydrobenzopyran 13^{15} and the thermally stable benzoxazine 12. The rearrangement rate is ca. one order of magnitude slower than the decomposition rate of 6 to 9, yielding a higher reaction barrier, $\Delta G^{\#} = 26.2$ kcal/mol (at 58 °C).¹²

Furthermore, benzoxazinobenzoxazine 10, like its counterpart 9, is capable of undergoing the RDA reaction regenerating once again 7 and 12, yet this time by cleavage of the more stable 1,3-benzoxazine ring. This was again demonstrated by conducting the thermolysis in benzene with an excess of ethyl vinyl ether (100 $^{\circ}$ C, 4 days, sealed tube, 65% yield) to yield as above a 1:1 mixture of 12 and 13, thus completing a third RDA-DA sequence. The barrier for cleavage of the 1,3-benzoxazine ring of 10, $\Delta G^{\#} = 31.2$ kcal/mol (at 108 $^{\circ}$ C), is considerably higher than that observed for 1,2-benzoxazines 6 and 9 (vide supra).¹²

In conclusion, we have demonstrated the power of sequential tandem RDA-DA reactions in the synthesis and interconversion of novel benzoxazinobenzoxazines, and have discovered *inter alia*, two mild o-quinone methide generators, and a convenient approach to the rare 4H-1,3-benzoxazine system. We are presently extending this strategy to synthesis and exploration of related novel heterocycles.

Acknowledgements: We thank Sima Alfi for technical assistance, and the Bar-Ilan University Committee for the Advancement of Science (Grant 2266) for financial support of this work.

References and Notes

 (a) Boger, D.L.; Weinreb, S.N. Hetero Diels-Alder Methodology in Organic Synthesis; Academic Press, Inc: New-York, 1987.

(b) Padwa, A. 1, 3-Dipolar Cycloaddition Chemistry; Wiley: New-York, 1984.

- 2. Ho, T.L. Tandem Organic Reactions; John Wiley & Sons, Inc.: New-York, 1992.
- 3. Abdelrazek, F.M.; Kandeel, Z.E.; Hilmy, K.M.H.; Elnagdi, M.H. Chem. Ind. (London) 1983, 439-440.
- 4. Meier, H; Klaus, S; Mengel, R; Niedermann H.-P. J. Heterocyclic Chem. 1991, 28, 843-848.
- 5. Yato, M.; Ohwada, T.; Shudo, K. J. Am. Chem. Soc. 1990, 112, 5341-5342.
- 6. All new compounds were characterized by their NMR and MS spectra and gave satisfactory elemental analyses.
- (a) Desimoni, G; Tacconi, G. Chem. Rev. 1975, 75 651-692.
 (b) Katritzky, A.R.; Zhang, Z.; Lan, X.; Lang, H. J. Org. Chem. 1994, 59 1900-1903, and references cited therein.
- Typical procedure: A solution of 6 (R = Me) (220 mg, 1.5 mmol) in dry CHCl₃ (10 ml) was refluxed for 2 h. The solvent was removed, and the residue chromatographed on silica (hexane-CH₂Cl₂) to give 9 (130 mg, 69% yield, from hexane), m.p. 116-117 ⁰C. When reflux is continued for additional 15 h and the reaction mixture worked up as above, 10 was isolated in 60% yield, m.p. 97-98 ⁰C.

9: ¹H NMR (CDCl₃, 300 MHz, TMS) δ 1.59 (3H_{Me}), 3.14, 3.22 (2H₁₃, J_{13,13}, = 17 Hz), 4.44, 4.57 (2H₇, J_{7,7}, = 18 Hz), 6.7-7.4 (8H, aromatic); ¹³C NMR (CDCl₃, 300 MHz, TMS) δ 23.48 (C_{Me}), 37.48 (C₁₃), 49.86 (C₇), 86.68 (C_{12a}), 114.35, 117.18, 117.31, 118.19, 121.02, 121.49, 126.84(x2), 128.10, 128.73, 151.62, 154.68 (12C, aromatic).

10: ¹H NMR (CDCl₃, 300 MHz, TMS) δ 1.84 (3H_{Me}), 3.88, 4.19 (4H, J = 15.8 Hz), 6.7-7.4 (8H, aromatic); ¹³C NMR (CDCl₃, 300 MHz; TMS) δ 23.57 (C_{Me}), 48.88 (C₁₁, C₁₃), 106.29 (C_{5a}), 116.73, 118.18, 121.46, 126.77, 128.19, 150.61 (12C, aromatic).

- 9. Duff, J.C; Furness, V.I. J. Chem. Soc. 1951 1512-1515.
- Typical procedure: A mixture of 11 (100 mg, 0.44 mmol), trimethyl orthoacetate (2 ml) and p-TsOH (5 mg) was refluxed until all the aminediol dissolved. Excess orthoacetate was evaporated and the residue crystallized from CH₂Cl₂-hexane to give 10.⁸
- 11. Jensen, F.R.; Beck, B.H. Tetrahedron Lett. 1966, 4523-4526.
- 12 The full analysis will be published elsewhere.
- 13. This part of the work was performed in collaboration with Naomi Lavochnik.
- 14. (a) Gabriel, S; *Liebigs Ann. Chem.* 1915, 409, 305-327.
 (b) 12: ¹H NMR (CDCl₃, 300 MHz, TMS) δ 2.08 (3H, s), 4.53 (2H, s), 6.8-7.2 (4H, m).
- 15. Descotes, G; Martin, J.-C.; Mathicolonis, N. Bull. Soc. Chim. Fr. 1972, 1077-1084.

(Received in UK 11 July 1994; revised 1 August 1994; accepted 4 August 1994)